1/17/2021

REBUS: Replica 1 Hardware Extensions

REBUS: A board with many Replica 1 extensions

15 August 2009

Features | Design & Programming | Pictures

For the first year or so of owning my Replica 1, my endeavours to enhance its capabilities were almost entirely software oriented, and thus KRUSADER was born.
However, the better I understood the hardware, the more I wanted to utilise this knowledge and expand my machine from a hardware perspective as well. Based on
various information and discussions on the web and on the Briel support and 6502 forums, there were a number of things that I had tried on breadboards and protoboards
and it made sense to integrate them tidily on a single extension board.

The work presented here shows the outcome of this effort; what I am calling REBUS for Replica Extensions Board... (I will have to think of something for the U and S

later. [:j)

Features

An extension board running connected to the Replica 1

Power

Before the Replica 1 SE, power was delivered via an AT power supply, and since these supplies come with a power switch, it was not necessary to
have one on the Replica 1 board. However, I don't have an AT power supply, and neither do I want once since they are bulky and unattractive.
Instead I built a small regulator board and powered my Replica using an old mobile phone charger. This little board also had no switch or indicator
LED, so I made sure that my extensions board added these for me. I also included a MAX702 so the machine would auto reset on startup.

Fast serial

One of the more painful aspects of the Replica 1 is the 2400 baud serial I/O speed. Bamse (fsastrom) showed a simple way to increase this to
19.2K on the Replica 1 support forum (Simple Comm Port). However, this has some implications for the operating system if you want both
standard I/O as well as fast serial I/O supported. In order to run using standard keyboard in and video out but still use the full serial I/O speed for
data transfer, it must be possible to switch between sources for character input and output, and this requires changes in the ROM. I patched the
‘Woz monitor, Apple 1 BASIC and KRUSADER and built an ACIA ROM that supports switching between standard 1/0, fast serial I/O, or running
both concurrently, based on a soft switch at location $F7. (Note that when operating in concurrent mode, the serial I/O is by necessity much slower
than when the pure fast serial mode is employed.)

Flash memory

The first thing I built and added to my Replica 1 was the simple 1 chip EEPROM burner from Vince Briel. This enabled me to burn new ROMs as
I updated KRUSADER, and also to have 8K of ROM for storing programs. The memory circuit I use here is an extension of this idea, using
instead 512K of Flash memory plus a latch to control paging as 32 banks of 16K each. The flash memory chip I use (an Atmel AT29C040A)
supports writing in 256 byte chunks and I am currently writing the code to allow it to function as a hard disk. Until this is done I just use an
external burner to write to it and treat it as a read only device on the Replica.

Cowgod (Apple II-style audio on the Replica-1) showed a simple way to generate sound on the Replica 1 using the same method employed by the
Apple II - i.e. toggling a flip-flop at a desired rate to click a speaker. Pitch is controlled by changing the delay between toggles, and duration by the
number of toggles. Some clever tricks involving damping the vibrations allow software support for volume control. Sharing the Apple II

Sound mechanism means the many Apple II sound generation techniques work, such as those described in the Apple Assembly Line article Making
Noise and Other Sounds, the simple tone generation described at 8-bit Sound & Fury, and this 1991 USENET post by Steve Hawley Apple I1
sound hacking.

After completing the circuit design and layout for the above features, I was left an unused select line and an empty section of board, so what better

Blinkenlights to fill it with than some blinkenlights? So I added 8 LEDs. Rather than give them any preset diagnostic purpose, I simply arranged them in a circle

and let their state be controlled by writing an 8-bit value to memory location $C300. Add some interesting sounds, and it makes a nice litle show
for the kids. [».

Design and Programming

The figure below shows the circuit diagram for the Replica 1 extensions board (click for a pdf version).

thewessens.net/collection/apple1/extensions/extensions.html#pictures

1/3

1/17/2021

R5232

REBUS: Replica 1 Hardware Extensions

§£;1¢_
o ahD
o
:tLL
HAX232 s
m2in m2ouT
RUIN RIDUT
] et r2ie 2
Tt TN | o
™D
e felag] 12 e
. cor fAClIT 2 m1s
u- U om
ci-
W -] oca
L 7
= e F mETr o5
oI’
ciz T cis
o = RXCLE
GBND 2] ypa

a5 ’-ﬂ— XL

AL@..131
1CIB
Fl
Als
=] Cla
=]
=3
7ALs@eN
o T als 2
tse [a5 33 004 JLXXX 74L58BN
S Tin
A2 i Al
B & O CW}jﬁ
L o g.'?m v
BB 2 ol id o e |-
- P 5T) ALY il xR
ey El AR Zlwm 30
rsa |42 & I 4 e
RSE 14 Al =, -2 12 =0 ®g
7 W 1] on e L8
- ? ol na 1 G 7ALSIEEN —Zd ;0 7o [l
o [ni |] - 184 s w0 [H2
Ll B 0z |3 120 = ¥
1 £ . P8
gg [20 mu_zaé ‘-5_
o |H2] T
oo |18 /BT 7AL588N e
R 11 ¥
12
Me..”1 Z4L588N £
i
" - iy - LEDS 1NS14
; = as—] 1o
Lk 1K 1 3 o]
—{ E
BE - o &
- TuF — B0
4 &
L — 7a
P BO
&0 LEDE
G-@ 7 7,
8 4L5377H

=
-3

1E B 1F [[8 1 TR 1 T 1uF

The central component of the circuit is the 74LS155 SELECT decoder, taking in the $C000 signal from the Replica 1 (active low) as well as address lines A8 and A9, and
outputting 4 control lines, one for each subsystem: sound ($C000), flash bank select ($C100), serial I/O control ($C200), and the LEDs ($C300).

Controlling the LEDs is by writing an 8-bit value to $C300 that causes the LEDs to light according to the binary representation of the value. A 74LS377 8-bit octal flip-
flop is used as memory. As described above, control of sound is as for the Apple II with any read or write to $C000 toggling the 74LS74 and generating a click of the

speaker. (The Apple II memory location for clicking the speaker is $C030, and since the last 8 bits are ignored by the select logic, Apple II sound code will work

unchanged). The following code gives a simple demonstration of synchronised sound and LED control.

SPKR
LEDS

LOOPS
IWIDTH

C
COUNT
WIDTH
LooP
LEDMSK
LEDCNT

C
MAIN

LIGHT AND SOUND SAMPLE

MEMORY MAP
= $Co00
.= $C300

CONSTANTS FOR NUMBER OF
LOOPS AND PULSE WIDTH

= $A
= $FF

ZERO PAGE

LU (| B I |}
R
N

ENTRY POINT
.M

LDA #LOOPS
STA LOOP
LDA #$0
STA LEDMSK
JSR UPDATE
JSR SWooP
DEC LOOP
BNE .1

RTS

INIT LOOPS

C
UPDATE

SWOOP

UPDATE LED STATE

.M

LDA
LSR
BNE
LDA
STA
STA
LDA
STA
RTS

ONE
.M

LDA
STA
LDA
STA
LDY
LDA
LDX
DEC
BNE
JSR
DEX
BNE
DEY
BNE
DEC
BNE
RTS

LEDMSK

1
#$80
LEDMSK
LEDS
#$20
LEDCNT

RESET MASK
LIGHT NEW LED
RESET COUNT

SWOOP SOUND

#$1

COUNT

#IWIDTH

WIDTH

COUNT

SPKR

WIDTH

LEDCNT

.3 BIT IS SET
UPDATE SET LEDS

.3
2

WIDTH
.1

The serial I/O is handled by the 6551 Asynchronous Communications Interface Adapter (ACIA), with a MAX232 to set the voltage levels for RS-232 I/O. This chip was
designed as a companion to the 6502 and hence the integration is very simple. The register select pins are tied to A0 and A1, and the chip selects to A9 and /ACIA from
the 155 decoder. Hence the chip register memory locations are $C200 for data, $C201 for status, $C202 for command and $C203 for control. Programming the ACIA is

as shown in the following table.

thewessens.net/collection/apple1/extensions/extensions.html#pictures

CMD = $C202
. CTRL = $C203
ACIA Initialisation
(19.2K baud, 8 bits, LDA #$0B
no parity, 1 stop bit STA CMD
party p bit LDA #$1F
STA CTRL
ACIA Output code ||DATA .= $C200
STATUS .= $C201

2/3

1/17/2021 REBUS: Replica 1 Hardware Extensions

STA DATA SEND DATA
.WAIT LDA STATUS LOAD STATUS
AND #%$10 CHECK BIT 4
BEQ .WAIT ACIA DONE?
DATA = $C200
STATUS .= $C201
ACIA Input code .WAIT LDA STATUS LOAD STATUS
AND #$08 CHECK BIT 3
BEQ .WAIT NO CHAR YET
LDA DATA LOAD CHAR

The other 74LS377 provides the memory for the flash memory bank selection, with the 5 low order bits of any value written to memory location $C100 being mapped to
the 5 high order bits of the AT29C040A. Since the block size for this chip is only 256 bytes, there is no great overhead to implementing a simple file system and
supporting read-write access. However, for now I am burning it externally and using it in read mode only. For the future, a read only switch is provided for data security.

The remaining parts of the circuit include a debounced IRQ button (this also needs some changes to the mini-monitor in KRUSADER ROM to properly handle the
interrupt), a MAX702 to provide the auto-reset on startup functionality, and an independent 5V regulator circuit with power switch and LED.

Pictures

-
-
.
.

A completed extension board

Back to KRUSADER or Computer Collection

thewessens.net/collection/apple1/extensions/extensions.html#pictures 3/3

